摘要:
为保障矿山安全生产前提下的尾砂有效堆存,针对凡口铅锌矿狮岭南Shn-455 m和狮岭Sh-600 m2个大结构参数采场,采用理论模型、极限平衡法、Mathews稳定图解法、数值模拟技术研究了采场围岩的稳定性。分析结果表明:基于矿山需求和工程经验设计的采场结构参数能够使采场围岩保持稳定状态,Shn-455 m和Sh-600 m采场顶板岩体稳定概率分别为89.8 %和88.5 %。在保证顶板岩体95 %稳定概率的要求下,进一步将Sh-600 m和Shn-455 m采场允许暴露的采场顶板走向长度确定为53.6 m和50.8 m。经数值模拟分析,优化后的采场结构参数在采场开挖前后均能保证采场岩体具有较小的沉降量,但仍可以通过采取支护措施的方法减少采场周边岩体塑性区的发育,确保大结构参数采场处于稳定状态。研究成果对保证凡口铅锌矿安全生产有重要理论和实践指导意义,也能为同类工程设计施工提供参考。
关键词:
采矿工程;大结构参数采场;数值模拟;稳定性;极限平衡法
Abstract:
To ensure the effective stockpiling of tailings under the premise of safe mine production,a theoretical model,limit equilibrium method,Mathews stability diagram method,and numerical simulation technology were applied to analyze the stability of 2 stopes with large structural parameters:Shilingnan Shn-455 m and Shiling Sh-600 m in Fankou Lead-Zinc Mine.The analysis results show that the stope structure parameters designed based on mining requirements and engineering experience can keep the surrounding rock in a stable state,and the stability probability of the roof rock mass of Shn-455 m and Sh-600 m stopes is 89.8 % and 88.5 % respectively.Under the requirement of ensuring a 95 % stability rate of the rock mass,the allowable exposed roof strike lengths of Sh-600 m and Shn-455 m stopes are further determined as 53.6 m and 50.8 m.According to the numerical simulation analysis,the optimized stope structure parameters can ensure that the rock mass has a small settlement before and after the excavation.Meanwhile,the development of the plastic zone in the rock mass around the stope can be reduced by applying rock support measures,keeping a stable state of the stope with large structure parameters.This research result has important theoretical and practical guiding significance for ensuring the safe production of Fankou Lead-Zinc Mine,and can also provide a reference for the design and construction of similar projects.
Keywords:
mining engineering;stope with large structure parameters;numerical simulation;stability;limit equilibrium method
[1]姜立春,沈彬彬,陈敏.循环爆破累积损伤诱发似层状铝土矿采空区群失稳机制[J].中南大学学报(自然科学版),2022,53(4):1429-1438.
[2]陈绍杰,祝伟豪,汪锋,等.建筑荷载下浅埋长壁老采空区地表移动变形规律与机理[J].煤炭学报,2022,47(12):4403-4416.
[3]胡建军.香炉山钨矿采空区群失稳模式与控制技术[D].北京:北京科技大学,2021.
[4]管佳林.深部地压分析及安全开采顺序研究[D].长沙:中南大学,2013.
[5]徐芝纶.弹性力学[M].北京:高等教育出版社,1988.
[6]姜永恒.镇沅金矿无底柱分段崩落采矿法采场结构参数的确定[J].黄金,2022,43(5):37-42.
[7]MILNESC.Newinfinitefamiliesofexactsumsofsquaresformulas,jacobiellipticfunctions,andramanujan’staufunction[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,1996,93(26):15004-15008.
[8]STEELEA.Sacredspace,seculartime:Sundownandtheindigenousmodernismofjohnjosephmathews[J].Modernism,2021,28(2):229-250.
[9]MAWDESLEYC,TRUEMANR,WHITENW.Extendingthemathewsstabilitygraphforopen-stopedesing[J].TransactionsoftheInstitutionofMining&Metallurgy,2001(110):27-39.
[10]冯兴隆.自然崩落法矿岩工程质量数字化评价及模拟技术研究[D].长沙:中南大学,2010.
[11]MAWDESLEYC.Usinglogisticregressiontoinvestigateandimproveanempiricaldesignmethod[J].InternationalJournalofRockMechanicsandMiningScience,2004,41(S1):756-761.
[12]谢文兵,陈小祥,郑百生.釆矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
[13]缪国卫,程文文,刘冬生,等.基于Flac3D的井下采场结构参数优化研究[J].黄金,2015,36(3):29-36.