• captcha

中国科技核心期刊

美国化学文摘社(CAS)数据库

美国EBSCO学术数据库

日本科学技术振兴机构数据库(JST)

期刊导读

首页   >    矿业工程

某露天矿5G网络安全技术研究与应用

  • 李鑫
  • 作者单位:
  • 国能新疆托克逊能源有限责任公司
  • 基金项目:

  • isnull
  • 详细信息:

  • 作者简介:
  • 李鑫(1979—),男,工程师,从事机电、智能矿山、信息与通讯技术等研究工作;E-mail:1783505731@qq.com
  • 通讯作者:
  • isnull
  • PDF下载

Research and application of 5G network security technology in an open-pit mine

  • English Author:
  • CHN Energy Xinjiang Tuokexun Energy Co.,Ltd.
  • Unit:
  • 摘要
  • 在线预览
  • 参考文献

摘要:

为提升某露天矿现场管理水平,提高现场可视化智能施工系统运算效率,在不改变现场可视化系统整体逻辑架构的前提下,将所有终端物联网探头的通信方式更改为5G通信。研究了一种基于粒子优化神经网络的计算机网络安全评估算法,使用神经网络对粒子群初始化过程进行赋值,完成粒子群优化收敛后,使用神经网络针对其输出结果进行进一步降维表达,最终使用模糊决策矩阵搭建4个数据预警级别。使用仿真软件对系统进行测试,发现该算法在发现泛洪攻击、扫描攻击、注入攻击、内部故障等方面,都有较高的综合有效率。5G网络安全技术的应用,有效减少了现场基础设施管理工作量,大幅提升了系统数据吞吐量,使得系统的可视化敏感度、网络稳定性均显著提升。

关键词:

5G网络;网络建设;安全技术;神经网络;露天矿

Abstract:

To improve the on-site management level of open-pit mines and the computing efficiency of the on-site visualization system of intelligent construction,without changing the overall logic architecture of the on-site visualization system,the communication mode of all terminal IoT probes is changed to 5G communication.A computer network security evaluation algorithm based on particle optimization neural network is studied.The neural network is used to assign values to the particle swarm initialization process,and after the particle swarm optimization convergence is completed,the neural network is used to further reduce the dimensionality of its output results,finally,4 data warning levels are built using the fuzzy decision matrix.The simulation software was used to test the system,and it was found that the algorithm had high comprehensive efficiency in detecting flood attacks,scanning attacks,injection attacks,and internal faults.The application of 5G network security technology effectively reduces the management workload for on-site infrastructure,greatly increasing the throughput of system data and prominently improving the sensitivity of visualization and network stability.

Keywords:

5G network;network construction;security technology;neural networks;open-pit mine