[1]ACOSTA-SANTOYOG,CAMESELLEC,BUSTOSE.Electrokinetic-enhancedryegrassculturesinsoilspollutedwithorganicandinorganiccompounds[J].EnvironmentalResearch,2017,158:118-125.
[2]BIR,SCHLAAKM,SIEFERTE,etal.Influenceofelectricalfields(ACandDC)onphytoremediationofmetalpollutedsoilswithrapeseed(Brassicanapus)andtobacco(Nicotianatabacum)[J].Che-mosphere,2010,83(3):318-326.
[3]CAMESELLEC,CHIRAKKARAAR,REDDYRK.Electrokinetic-enhancedphytoremediationofsoils:Statusandopportunities[J].Chemosphere,2013,93(4):626-636.
[4]CHIRAKKARAAR,REDDYRK,CAMESELLEC.Electrokineticamendmentinphytoremediationofmixedcontaminatedsoil[J].ElectrochimicaActa,2015,181:179-191.
[5]EVANGELOUWM,EBELM,SCHAEFFERA.Chelateassistedphyto-extractionofheavymetalsfromsoil.Effect,mechanism,toxicity,andfateofchelatingagents[J].Chemosphere,2007,68(6):989-1003.
[6]GUODONGF,JUANG,CUNL,etal.Keyroleofpersistentfreeradicalsinhydrogenperoxideactivationbybiochar:Implicationstoorganiccontaminantdegradation[J].EnvironmentalScience&Technology,2014,48(3):1902-1910.
[7]GAVRILESCUM,PAVELVL,CRETESCUI.Characterizationandremediationofsoilscontaminatedwithuranium[J].JournalofHa-zardousMaterials,2008,163(2):475-510.
[8]GONGX,HUANGD,LIUY,etal.Biocharfacilitatedthephyto-remediationofcadmiumcontaminatedsediments:Metalbehavior,planttoxicity,andmicrobialactivity[J].ScienceoftheTotalEnvironment,2019,666:1126-1133.
[9]HOUBEND,EVRARDL,SONNETP.BeneficialeffectsofbiocharapplicationtocontaminatedsoilsonthebioavailabilityofCd,PbandZnandthebiomassproductionofrapeseed(BrassicanapusL.)[J].BiomassandBioenergy,2013,57:196-204.
[10]HUANGT,LIUL,ZHOUL,etal.Operatingoptimizationfortheheavymetalremovalfromthemunicipalsolidwasteincinerationflyashesinthethree-dimensionalelectrokinetics[J].Chemosphere,2018,204:294-302.
[11]HUANGT,LIUL,ZHOUL,etal.Electrokineticremovalofchromiumfromchromiteore-processingresidueusinggraphiteparticle-supportednanoscalezero-valentironasthethree-dimensionalelectrode[J].ChemicalEngineeringJournal,2018,350:1022-1034.
[12]HUANGT,ZHANGS,LIUL,etal.Graphiteparticleelectrodesthatenhancethedetoxificationofmunicipalsolidwasteincinerationflyashesinathree-dimensionalelectrokineticplatformanditsmechanisms[J].EnvironmentalPollution,2018,243:929-939.
[13]KEILUWEITM,NICOPS,JOHNSONMG,etal.Dynamicmolecularstructureofplantbiomass-derivedblackcarbon(biochar)[J].EnvironmentalScience&Technology,2010,44(4):1247-1253.
[14]KODAMAY,SATOK,SUZUKIK,etal.Electronmicroscopestudyoftheformationofgraphiticnanostructuresinnickel-loadedwoodchar[J].Carbon,2012,50(10):3486-3496.
[15]KUWATAK,SAITOY,SHIDAS,etal.Intercalationofwoodcharcoalwithsulfuricacid[J].JournalofWoodScience,2009,55(2):154-158.
[16]LIT,WANGY,GUOS,etal.Effectofpolarity-reversalonelectrokineticenhancedbioremediationofpyrenecontaminatedsoil[J].ElectrochimicaActa,2016,187:567-575.
[17]LIUH,WEIYF,LUOJM,etal.3Dhierarchicalporousstructuredbiocharaerogelforrapidandefficientphenicolantibioticsremovalfromwater[J].ChemicalEngineeringJournal,2019,368:639-648.
[18]LIUSM,YANGB,LIANGYS,etal.Prospectofphytoremediationcombinedwithotherapproachesforremediationofheavymetal-pollutedsoils[J].EnvironmentalScienceandPollutionResearchInternational,2020,27(14):16069-16085.
[19]MAENPAAA,KUKKONENJVK,LYDYMJ.Remediationofheavymetal-contaminatedsoilsusingphosphorus:Evaluationofbioavailabilityusinganearthwormbioassay[J].ArchivesofEnvironmentalContaminationandToxicology,2002,43(4):389-398.
[20]MUKHERJEEA,ZIMMERMANRA.Organiccarbonandnutrientreleasefromarangeoflaboratory-producedbiocharsandbiochar-soilmixtures[J].Geoderma,2013,193:122-130.
[21]NAWAZAM,JIAOY,CHENC,etal.Melatoninpretreatmentimprovesvanadiumstresstoleranceofwatermelonseedlingsbyreducingvanadiumconcentrationintheleavesandregulatingmelatoninbiosynthesisandantioxidant-relatedgeneexpression[J].JournalofPlantPhysiology,2018,220:115-127.
[22]OMONDIOM,XIAX,NAHAYOA,etal.Quantificationofbiochareffectsonsoilhydrologicalpropertiesusingmeta-analysisofliteraturedata[J].Geoderma,2016,274:28-34.
[23]PEPPICELLIC,CLEALLP,SAPSFORDD,etal.Changesinmetalspeciationandmobilityduringelectrokinetictreatmentofindustrialwastes:Implicationsforremediationandresourcerecovery[J].ScienceoftheTotalEnvironment,2018,624:1488-1503.
[24]PHILLIPSCG,GARDAM.Planttissueculturemediaandpractices:Anoverview[J].InVitroCellularDevelopmentalBiology-Plant,2019,55(3):242-257.
[25]RABIYAUE,ALIM,FAROOQMA,etal.Comparativeefficiencyofsilicagel,biochar,andplantgrowthpromotingbacteriaonCrandPbavailabilitytoSolanummelongenaL.incontaminatedsoilirrigatedwithwastewater[J].FrontiersinPlantScience,2022,13:950362.
[26]SARWARN,IMRANM,SHAHEENRM,etal.Phytoremediationstrategiesforsoilscontaminatedwithheavymetals:Modificationsandfutureperspectives[J].Chemosphere,2017,171:710-721.
[27]SONGB,XUP,CHENM,etal.Usingnanomaterialstofacilitatethephytoremediationofcontaminatedsoil[J].CriticalReviewsinEnvironmentalScienceandTechnology,2019,49(9):791-824.
[28]STINGUA,VOLFI,POPAIV,etal.Newapproachesconcerningtheutilizationofnaturalamendmentsincadmiumphytoremediation[J].IndustrialCropsProducts,2011,35(1):53-60.
[29]TANGL,LIUY,WANGJ,etal.Enhancedactivationprocessofpersulfatebymesoporouscarbonfordegradationofaqueousorganicpollutants:Electrontransfermechanism[J].AppliedCatalysisB:Environmental,2018,231:1-10.
[30]VANDENHOVEH,VANHOUDTN,DUQUNEL,etal.Comparisonoftwosequentialextractionproceduresforuraniumfractionationincontaminatedsoils[J].JournalofEnvironmentalRadioactivity,2014,137:1-9.
[31]YANYJ,XUEFJ,MUHAMMADF,etal.Applicationofiron-loadedactivatedcarbonelectrodesforelectrokineticremediationofchromium-contaminatedsoilinathree-dimensionalelectrodesystem[J].ScientificReports,2018,8(1):5753.
[32]VERDEILJ,ALEMANNOL,NIEMENAKN,etal.Pluripotentversustotipotentplantstemcells:Dependenceversusautonomy?[J].TrendsinPlantScience,2007,12(6):245-252.
[33]WANGJ,WANGS.Preparation,modificationandenvironmentalapplicationofbiochar:Areview[J].JournalofCleanerProduction,2019,227:1002-1022.
[34]WANGLH,ZHANGXB,ZHOUQ,etal.Effectsofterbium(Ⅲ)onsignalingmoleculesinhorseradish[J].BiologicalTraceElementResearch,2015,164(1):122-129.