• captcha

中国科技核心期刊

美国化学文摘社(CAS)数据库

美国EBSCO学术数据库

日本科学技术振兴机构数据库(JST)

期刊导读

首页   >    矿业工程

基于自组织神经网络与元启发式算法的地表爆破振动预测方法

  • 吴志波|刘佳鹏|徐敬元|蒋蔚|薛培|杨思敏|赵俊波
  • 作者单位:
  • 北方矿业有限责任公司|北方矿业有限责任公司|北方矿业有限责任公司|北方矿业有限责任公司|北方矿业有限责任公司|北方矿业有限责任公司|北方矿业有限责任公司
  • 基金项目:

  • isnull
  • 详细信息:

  • 作者简介:
  • 吴志波(1988—),男,工程师,硕士,从事金属矿山开采工艺及岩石力学等方面的设计咨询及管理工作;E-mail:707688200@qq.com
  • 通讯作者:
  • isnull
  • PDF下载

Surface blasting vibration prediction method based on Self-organizing Neural Network and metaheuristic algorithms

  • English Author:
  • Norin Mining Co.,Ltd.|Norin Mining Co.,Ltd.|Norin Mining Co.,Ltd.|Norin Mining Co.,Ltd.|Norin Mining Co.,Ltd.|Norin Mining Co.,Ltd.|Norin Mining Co.,Ltd.
  • Unit:
  • 摘要
  • 在线预览
  • 参考文献

摘要:

提出一种基于自组织神经网络(SONN)和元启发式算法的露天矿爆破诱发地表振动预测方法,通过几种常用的元启发式算法,包括蝠鲼觅食优化(MRFO)、饥饿游戏搜索(HGS)、天鹰优化算法(AO)和裸鼹鼠算法(NMRA),以提高SONN模型的预测精度。利用k折交叉检验以确定算法最优参数,并用于重新训练模型以预测爆破诱发地表振动。以国内某露天矿为例验证了提出方法的有效性。研究结果表明,提出的4种模型均可准确预测爆破诱发地表振动,而在4种模型中,预测精度及可靠性由高到低排序均为:MRFO-SONN模型>HGS-SONN模型>NMRA-SONN模型>AO-SONN模型。推荐采用MRFO-SONN模型来预测由爆破活动诱发的地表振动。

关键词:

矿山安全;爆破振动;质点峰值振动速度;自组织神经网络;元启发式算法;杂交模型;露天矿

Abstract:

A method for predicting surface vibrations induced by blasting in open-pit mines is proposed,based on Self-organizing Neural Network (SONN) and several commonly used metaheuristic algorithms to improve the prediction accuracy of the SONN model.These algorithms include Manta Ray Foraging Optimization (MRFO),Hunger Games Search (HGS),Aquila Optimization (AO),and Naked Mole-rat Algorithm (NMRA).The k-fold cross-validation was employed to determine the optimal parameters for the algorithms,which were then used to retrain the model for predicting blast-induced surface vibrations.A case study of a domestic open-pit mine was conducted to validate the effectiveness of the proposed method.The research results indicate that all 4 models accurately predict blast-induced surface vibrations.Among them,the prediction accuracy and reliability are ranked from highest to lowest as follows:MRFO-SONN model>HGS-SONN model>NMRA-SONN model>AO-SONN model.The MRFO-SONN model is recommended for predicting surface vibrations induced by blasting activities.

Keywords:

mine safety;blasting vibration;peak particle velocity;Self-organizing Neural Network;metaheuristic algorithm;hybrid model;open-pit mine