• captcha

中国科技核心期刊

美国化学文摘社(CAS)数据库

美国EBSCO学术数据库

日本科学技术振兴机构数据库(JST)

期刊导读

首页   >    矿业工程

基于IGA-FL融合算法的有色金属选矿精矿品位优化研究

  • 张健仁|周新宇|廖辉宝|刘欣宇
  • 作者单位:
  • 江西省地质调查勘查院基础地质调查所&江西有色地质矿产勘查开发院|江西省地质调查勘查院基础地质调查所&江西有色地质矿产勘查开发院|江西省地质调查勘查院基础地质调查所&江西有色地质矿产勘查开发院|江西省地质调查勘查院基础地质调查所&江西有色地质矿产勘查开发院
  • 基金项目:

  • isnull
  • 详细信息:

  • 作者简介:
  • 张健仁(1987—),男,高级工程师,从事资源勘查工作;E-mail:x123yoyo@163.com
  • 通讯作者:
  • isnull
  • PDF下载

Optimization of concentrate grade in non-ferrous metals mineral processing based on IGA-FL fusion algorithm

  • English Author:
  • Basic Geological Survey Institute of Jiangxi Geological Survey and Exploration Institute&Jiangxi Nonferrous Geological Exploration and Development Institute|Basic Geological Survey Institute of Jiangxi Geological Survey and Exploration Institute&Jiangxi Nonferrous Geological Exploration and Development Institute|Basic Geological Survey Institute of Jiangxi Geological Survey and Exploration Institute&Jiangxi Nonferrous Geological Exploration and Development Institute|Basic Geological Survey Institute of Jiangxi Geological Survey and Exploration Institute&Jiangxi Nonferrous Geological Exploration and Development Institute
  • Unit:
  • 摘要
  • 在线预览
  • 参考文献

摘要:

为优化有色金属选矿过程的精矿品位,将模糊逻辑算法与免疫遗传算法进行融合,设计出了一种IGA-FL融合算法,并基于该融合算法构建有色金属选矿检测模型,对有色金属选矿的精矿品位进行检测和优化。对比试验结果显示,IGA-FL融合算法的数据查全率为99.7 %,计算速度为16.7 bps;基于该算法的检测模型平均检测准确率为97.3 %,检测耗时1.8 s。应用基于IGA-FL融合算法的检测模型后,有色金属选矿精矿品位达到70.5 %,说明该检测模型能够对有色金属选矿的精矿品位进行优化。

关键词:

有色金属选矿;精矿品位;模糊逻辑算法;免疫遗传算法;融合算法;检测模型

Abstract:

To optimize the concentrate grade in the beneficiation process of non-ferrous metals,a fusion algorithm combining fuzzy logic(FL) and immune genetic algorithm(IGA) was developed.Based on this fusion algorithm,a detection model for the beneficiation of non-ferrous metals was constructed to detect and optimize the concentrate grade.Comparative test results show that the data recall rate of the IGA-FL fusion algorithm is 99.7 %,with a computation speed of 16.7 bps.The average detection accuracy of the model based on this algorithm is 97.3 %,with a detection time of 1.8 s.After applying the detection model based on the IGA-FL fusion algorithm,the concentrate grade of non-ferrous metal beneficiation reached 70.5 %,indicating that this model can optimize the concentrate grade effectively.

Keywords:

non-ferrous metal beneficiation;concentrate grade;fuzzy logic algorithm;immune genetic algorithm;fusion algorithm;detection model