• captcha

中国科技核心期刊

美国化学文摘社(CAS)数据库

美国EBSCO学术数据库

日本科学技术振兴机构数据库(JST)

期刊导读

金属矿山安全智能化发展现状及展望

  • 作者:
  • 王鑫阳12,魏鹏鹏12,崔铁军1,2*

  • 作者单位:
  • (1. 沈阳理工大学环境与化学工程学院;2. 沈阳理工大学辽宁省现代安全工程产业学院)
  • 基金项目:

  • 辽宁省属本科高校基本科研业务费专项资金资助项目(LJ212410144051)
  • 详细信息:

  • 作者简介:
  • 王鑫阳(1995—),男,副教授,博士,从事粉尘爆炸理论及防治技术研究工作;E‑mail:wxinyang@sylu. edu. cn
  • 通讯作者:
  • 崔铁军(1983—),男,教授,博士,研究方向为系统可靠性及系统故障演化理论;E‑mail:ctj. 159@163. com
  • PDF下载

Current status and prospects of intelligent and safe development in metal mines

  • English Author:
  • Wang Xinyang1,2, Wei Pengpeng1,2, Cui Tiejun1,2

  • Unit:
  • (1. School of Environmental and Chemical Engineering, Shenyang Ligong University; 2. Liaoning Institute of Modern Safety Engineering Industry, Shenyang Ligong University)
  • 摘要
  • 在线预览
  • 参考文献

摘要:

智能化矿山是传统矿业与前沿技术深度融合的产业发展新方向,以人工智能和机器学习为核心技术支撑构建全链条数字化体系。国内金属矿山建设与智能化技术协同推进,但矿山安全生产仍面临多重风险耦合的严峻挑战。通过对金属矿山安全智能化研究进展进行梳理,重点从复杂地质条件、设备安全风险及多灾源隐患 3方面阐述当前金属矿山安全现状,以及智能化技术在应对金属矿山核心风险因素中的具体应用。同时,提出矿山智能化在技术瓶颈与设备智能化水平、数据整合与标准化难题、深部开采与复杂环境适应性方面存在的挑战,并从核心技术的自主创新与装备升级、数据驱动的协同管控与标准化建设及深部极端环境适应性对金属矿山安全智能化技术发展进行了展望。

关键词:

金属矿山;智能化;安全风险;事故灾害;机械伤害;火灾爆炸

Abstract:

The intelligent mine represents a new direction in the integration of traditional mining with cutting-edge technologies, aiming to establish a full-chain digitalized system driven by the core technology of artificial intelli gence and machine learning. In China, the green construction of metal mines is advancing in coordination with intell gent technologies. Hwever. the safety of mining oper Pes seven enges due to the coL ple risk factors. This paper reviews the research progress or intelligent safety in metal mines, focusing on 3 major aspects: complex geological conc ns. eo nt-related safety risks, and potential risks of-hazard SOL es t discusses the current state of safetvhe specific applications of ligent technologies in addressing key risk factors. Moreover, the major challenges intelligen luding technical bottlenecks and equipment intelligence levels, icult s in data tegr and standardizatio on, and poor adaptability to deep mining and complex environments. In response, the study prospects the development of intelligent and safe technolo-gies in meta cu: independent novation in core technologies and equipment upgrades, data-driven collaboralive conlro ar nd standardization, and enhanced adaptability to extreme conditions in deep mining.

Keywords:

metal mine; intelligentization; safety risk; accident and disaster; mechanical injury; fire and explosion