中国科技核心期刊
美国化学文摘社(CAS)数据库
美国EBSCO学术数据库
日本科学技术振兴机构数据库(JST)
邱锦鸿 1,卢圣祥 2,王守旭 2,鹿峰宾 2,周荣志 2,邱昆峰 1*
Qiu Jinhong¹, Lu Shengxiang², Wang Shouxu², Lu Fengbin², Zhou Rongzhi², Qiu Kunfeng1
中国矽卡岩金矿床资源丰富,累计探明金储量 1 871 t,占全国金储量的 11 %。根据成矿侵入岩地球化学特征,矽卡岩金矿床可分为氧化型与还原型 2类。尽管前人对全球矽卡岩金矿床开展了系统性研究,但针对氧化型、还原型矽卡岩金矿床的对比分析仍显不足,其氧化还原性差异的成因机制尚不明确。通过系统梳理前人研究成果,从成矿构造背景、侵入岩特征、蚀变矿物组合、成矿流体特征及成矿模式等方面进行对比研究,得出以下结论:①2类矽卡岩金矿床主要形成于大洋岛弧与大陆边缘造山带环境。②氧化型矽卡岩金矿床的侵入岩以高氧逸度(fO2>(fO2(FMQ)+2))、磁铁矿发育为特征,全岩w(Fe2O3)/w(Fe2O3+FeO)>0.4;而还原型矽卡岩金矿床的侵入岩以发育钛铁矿及磁黄铁矿为主,w(Fe2O3)/w(Fe2O3+FeO)≪0.75。③氧化型矽卡岩金矿床矽卡岩蚀变以透辉石为主,石榴子石含量显著高于辉石,金属元素组合为Au-Cu-Mo-Pb-Zn;还原型矽卡岩金矿床矽卡岩蚀变则以钙铁辉石为主,辉石与石榴子石含量相近,金属元素组合为 Au-As-Te-Bi。④2类矽卡岩金矿床成矿流体均呈现高温高盐度向中低温低盐度演化的趋势,但还原型矽卡岩金矿床流体富含CH4。⑤矽卡岩金矿床成矿模式表现为高温富金属热液岩浆流体,通过构造驱动形成进矽卡岩蚀变(石榴子石、透辉石等);随温度降低,在矽卡岩蚀变(含水硅酸盐矿物)主导下,岩石破裂促进金银等矿化形成,最终低温阶段大气降水混入,形成石英-碳酸盐脉,标志成矿结束。不同的是,氧化型矽卡岩金矿床常伴随铜钼矿化形成,而还原型矽卡岩金矿床则常伴有钨锡矿化产出。通过进一步总结矽卡岩金矿床研究中存在的科学问题,提出未来需结合扩散年代学、矿物纳米结构分析及机器学习等前沿技术深化成矿机制研究。
China hosts abundant skarn⁃type gold deposits, with a cumulative proven gold reserve of 1 871 t,accounting for 11 % of the national total. Based on the geochemical characteristics of ore⁃forming intrusive rocks,skarn⁃type gold deposits can be classified into 2 categories: oxidized and reduced types. Although previous studies haveconducted systematic investigations on skarn gold deposits worldwide, comparative analyses between oxidized andreduced skarn gold systems remain insufficient, and their redox differences are still unclear. Through a systematicreview of previous research, this study compares the 2 deposit types in terms of metallogenic tectonic settings, intrusiverock characteristics, alteration mineral assemblages, ore⁃forming fluid properties, and metallogenic models. The keyfindings are as follows: ①Both types of skarn gold deposits predominantly form in oceanic island arc and continentalmargin orogenic belt settings.② Intrusive rocks in oxidized skarn gold deposits are characterized by high oxygen fugacity(fO2>(fO2(FMQ)+ 2))and well⁃developed magnetite, with whole⁃rock w(Fe₂O₃)/w(Fe₂O₃+FeO)> 0.4, whereas those inreduced skarn gold deposits are dominated by ilmenite and pyrrhotite, with w(Fe ₂O ₃)/w(Fe ₂O ₃ + FeO)≪ 0.75.③Skarn alteration in oxidized deposits is dominated by diopside, with garnet contents significantly higher than pyroxene,and the associated metal assemblage is Au-Cu-Mo-Pb-Zn; in reduced deposits, skarn alteration is dominated byhedenbergite, with garnet and pyroxene in comparable amounts, and the metal assemblage is Au-As-Te-Bi. ④Bothtypes exhibit a fluid evolution trend from high⁃temperature, high⁃salinity to medium⁃low temperature, low⁃salinityconditions, but fluids in reduced skarn gold deposits are enriched in CH ₄ . ⑤The metallogenic model of skarn golddeposits involves high⁃temperature, metal⁃rich magmatic hydrothermal fluids driven by tectonic activity formingprograde skarn alteration(garnet, pyroxene). As temperatures decrease, rock fracturing dominated by skarn⁃type alteration(hydroussilicateminerals)promotesAu-Agmineralization,withmeteoricwatermixingduring the final low⁃temperature stageforming quartz⁃carbonate veins marking the end of mineralization. A notable distinction is that oxidized skarn golddeposits are commonly associated with Cu-Mo mineralization, whereas reduced skarn gold deposits are often accompaniedby W-Sn mineralization. This study also summarizes key scientific issues in current research on skarn⁃type gold depositsand suggests that future work should integrate advanced techniques such as diffusion chronology, nanoscale mineralstructural analysis, and machine learning to further unravel metallogenic mechanisms.