• captcha

中国科技核心期刊

美国化学文摘社(CAS)数据库

美国EBSCO学术数据库

日本科学技术振兴机构数据库(JST)

期刊导读

首页   >    矿业工程

基于IDBO-RF模型的矿柱稳定性预测研究

  • 作者:
  • 谢成龙1,2,3,黄 敏1,2,3,高 忠1,2,3,李 栋1,2,3,宋贤良1,2,3,温 晨1,2,3

  • 作者单位:
  • (1. 低品位难处理黄金资源综合利用国家重点实验室;2. 紫金矿业集团股份有限公司; 3. 紫金(长沙)工程技术有限公司)
  • 基金项目:

  • 国家自然科学基金项目(51804079);福建省自然科学基金项目(2019J05039)
  • 详细信息:

  • 作者简介:
  • 谢成龙(1998—),男,助理工程师,硕士,从事采矿技术及机器学习方向的研究工作;E‑mail:2412585161@qq.com
  • PDF下载

Research on pillar stability prediction based on IDBO-RF model

  • English Author:
  • Xie Chenglong1,2,3 , Huang Min1,2,3 , Gao Zhong1,2,3 , Li Dong1,2,3 , Song Xianliang1,2,3, Wen Chen1,2,3

  • Unit:
  • (1. State Key Laboratory of Comprehensive Utilization of Low‑grade Refractory Gold Ores; 2. Zijin Mining Group Co., Ltd.; 3. Zijin(Changsha)Engineering Technology Co., Ltd.)
  • 摘要
  • 在线预览
  • 参考文献

摘要:

为提高矿柱稳定性预测的精度,提出了一种改进的蜣螂优化算法(IDBO),用以优化随机森林(RF)分类预测模型。算法改进基于 5方面:基于PWLCM混沌映射提升初始种群的质量;在滚球蜣螂位置更新中引入Levy随机游走策略,提高了算法的全局寻优能力;引入自适应边界控制因子权衡算法的全局搜索与局部开发能力,采用正余弦搜索策略改进偷窃蜣螂个体,改善其局部搜索能力,并执行基于混沌因子的越界处理策略,使算法在整个阶段保持种群多样性;采用基准函数进行测试,结果表明 IDBO算法具有更强的搜索能力和鲁棒性;利用 IDBO算法优化RF树的个数和最小叶子点数,建立 IDBO-RF矿柱稳定性预测模型。基于实例分析与现有模型对比,IDBO-RF模型的预测精度达到了90 %,预测性能、鲁棒性均优于其他模型。

关键词:

矿柱稳定性;稳定性预测;改进蜣螂算法;随机森林;全局搜索;局部开发;预测精度

Abstract:

To improve the accuracy of pillar stability prediction, an improved scarab optimization algorithm(IDBO)is proposed to optimize the random forest(RF)classification prediction model. The improvement is based on5 aspects: using PWLCM chaotic mapping to enhance the quality of the initial population; introducing Levy randomwalk strategy in the rolling scarab position update to improve the global optimization ability of the algorithm; introducingan adaptive boundary control factor to weigh the global search and local development ability of the algorithm, and usinga cosine‑sine search strategy to improve the inpidual of the stealing scarab, enhancing its local search ability, andexecuting an out‑of‑bound handling strategy based on chaotic factors to maintain population persity throughout theprocess; using benchmark functions for testing, which shows that the IDBO algorithm has stronger search ability androbustness; utilizing the IDBO algorithm to optimize the number of RF trees and the minimum number of leaf nodes,establishing the IDBO-RF pillar stability prediction model. Based on case analysis and comparison with existing models,the prediction accuracy of the IDBO-RF model reaches 90 %, and its prediction performance and robustness are superiorto other models.

Keywords:

pillar stability; stability prediction; improved scarab algorithm; random forest; global search; localdevelopment;prediction accuracy