中国科技核心期刊
美国化学文摘社(CAS)数据库
美国EBSCO学术数据库
日本科学技术振兴机构数据库(JST)
With the development of UAV,satellite navigation and microelectronics technology,airborne electromagnetic exploration is possible,but electromagnetic interference restricts the development of airborne electromagnetic method.Therefore,this paper proposes an airborne orthogonal horizontal magnetic dipole source frequency-tipper sounding method.In order to demonstrate the feasibility of the method,the expressions of horizontal magnetic field and vertical magnetic field of airborne orthogonal horizontal magnetic dipole source are derived by using the superposition principle of field from the Maxwell equations in active frequency domain,and the tensor frequency-tipper is constructed.Then,the digital filtering technique is used to calculate the imaginary part of tensor frequency-tripper response of homogeneous geodetic medium.By contrast and analysis,the spatial distribution rules of the tensor frequency-tipper with airborne method are the same as the ground method.The imaginary amplitude IFTx and IFTy have the characteristics of near,transition and far regions.Then,the effects of the variation of earth resistance,flight altitude and reception and emission distance parameters on the imaginary part of tensor frequency-tipper are calculated respectively.The whole region analysis shows that the response in the far region is linear,and the transition and the near regions show a complex functional relationship.Finally,the imaginary part of the frequency-tipper response of the typical layered medium in the far region is calculated.The calculation results show that the imaginary part of tensor frequency-tipper can reflect the electrical structure of the typical layered medium like the geometric resistance method.In a word,the imaginary part of tensor frequency-tipper in the far region is expected to solve the technical bottleneck of airborne electromagnetic exploration.