Chinese core journals in science and technology
Chemical Abstracts Service (CAS) database
EBSCO Academic Database in the United States
Japan Science and Technology Agency Database (JST)
To ensure the effective stockpiling of tailings under the premise of safe mine production,a theoretical model,limit equilibrium method,Mathews stability diagram method,and numerical simulation technology were applied to analyze the stability of 2 stopes with large structural parameters:Shilingnan Shn-455 m and Shiling Sh-600 m in Fankou Lead-Zinc Mine.The analysis results show that the stope structure parameters designed based on mining requirements and engineering experience can keep the surrounding rock in a stable state,and the stability probability of the roof rock mass of Shn-455 m and Sh-600 m stopes is 89.8 % and 88.5 % respectively.Under the requirement of ensuring a 95 % stability rate of the rock mass,the allowable exposed roof strike lengths of Sh-600 m and Shn-455 m stopes are further determined as 53.6 m and 50.8 m.According to the numerical simulation analysis,the optimized stope structure parameters can ensure that the rock mass has a small settlement before and after the excavation.Meanwhile,the development of the plastic zone in the rock mass around the stope can be reduced by applying rock support measures,keeping a stable state of the stope with large structure parameters.This research result has important theoretical and practical guiding significance for ensuring the safe production of Fankou Lead-Zinc Mine,and can also provide a reference for the design and construction of similar projects.