Chinese core journals in science and technology

Chemical Abstracts Service (CAS) database

EBSCO Academic Database in the United States

Japan Science and Technology Agency Database (JST)

Journal Guide

Home   >   Journal Articles

Study on flocculation sedimentation of copper tailings slurry and its effect on solidification

  • English Author:
  • Faculty of Public Safety and Emergency Management,Kunming University of Science and Technology|Faculty of Chemical Engineering,Kunming University of Science and Technology
  • Unit:
  • PDF Download
  • Abstract
  • Online Preview
  • References

Abstract:

To investigate the flocculation and sedimentation effects of different single and composite flocculants on copper tailings slurry,traditional inorganic flocculant aluminum sulfate,polymeric inorganic flocculant polyaluminum chloride (PAC),and organic flocculant anionic polyacrylamide (APAM) were selected for experiments.Both single-flocculant tests using all 3 flocculants and composite-flocculant tests using the 2 inorganic flocculants mixed with APAM were conducted.Subsequently,the flocculated copper tailings slurry was tested for cement solidification.Results show that,under the same dosage,the flocculation performance of the 3 flocculants follows the order of APAM>PAC>aluminum sulfate.In the composite tests,the optimal combination of each flocculant resulted in better sedimentation than using them inpidually.The compressive strength of the solidified copper tailings after flocculation increased by a minimum of 2.4 times at all curing ages.Among the single flocculants,the copper tailings solidified with aluminum sulfate exhibited the highest compressive strength at all curing ages,while APAM had the lowest.For composite flocculants,the combination of aluminum sulfate and APAM produced a higher compressive strength in the solidified copper tailings compared to the PAC and APAM combination.

Keywords:

copper tailings slurry;flocculation sedimentation;inorganic flocculant;organic flocculant;tailings solidification;compressive strength